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Abstract 

One of the major challenges in the field of tissue engineering is the production of 

scaffolding in nano-scale. The study of structural-functional connections in 

pathological and normal tissues with biologically active alternatives or engineered 

materials has been developed. Extracellular Matrix (ECM) is a suitable environment 

consisting of gelatin, elastin and collagen types I, II and III, etc., which are provided 

to cells for wound healing, embryonic development, cell growth and organogenesis, 

and. They also play a role in transmitting structural integrity and overall strength to 

tissues. In tissues, ECM manufacturers are structurally 50 to 500 nm in diameter; 

nanotechnology must be used to create scaffolds or ECM analogues. Recent 

advances in nanotechnology have led to the development of ECM-engineered 

analogues in various ways. To date, three self-assembly, phase separation and 

electrospinning techniques have been developed to activate nanofiber scaffolds. 

With these advances and the construction of a "biomimetic" environment, 

engineered tissue or scaffolding is now possible for a variety of tissues. This study 

will discuss the three existing methods for creating Tissue engineering scaffolds that 

are able to mimic new tissue, as well as the discovery of materials for use in 

scaffolding. 
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Introduction 

This review discusses the design of scaffolds 

having nanoscale features for collagen, fibrin, 

fibrinogen, chitosan, elastin, gelatin and cellulose 

are biopolymers nanofibers (are now emerging as 

one class of important nanomaterials) represent a 

practical approach to control cellular migration 

and orientation in cell culture (1,2). The 

advantage of natural polymers is that they are 

very similar to macromolecules in the body (3). 

The imitation of extracellular matrix architecture 

is one of the challenges of cell culture (4). In this 

regard, scientists are using the principle of 

nanotechnology to design and build nano 

scaffolds that are capable of replacing ECMs as 

well as to repair damaged tissues (5). One of the 

disadvantages of natural polymers, such as 

hyaluronic acid, is that they are mechanically 

weak and require processing to separate these 

polymers (6).  

The study of cancer metastasis is limited due to 

weakness in tumor molecular progression. The 

types of biological molecules, such as growth 

hormones that are made up of scaffold have a 

positive effect on cell growth, proliferation, and 

function (7). Fine fibers made by electrostatic 

force have been discussed, investigated, and 

patented since the late 18th century (Table1). 

Nowadays, various types of natural and synthetic 

polymers are available in 3D fiber scaffolding (8) 

(Table 2). Three-dimensional (3D) culture 

platforms are able to mimic indoor environments, 

which are more physiologically important than 

conventional two-dimensional (2D) cultures (9). 

To connect cell-cell and cell-ECM, porous 3D 

structures are designed similar to natural ECM; 

the use of 3D culture medium has the ability to 

evaluate the impact of materials and 

environmental conditions that can be changed, 

which is an advantage of using 3D culture over 

the animal model (10). And the 3D cell culture 

model creates a bridge between the 2D cell 

culture and the animal model (11). Because of the 

advantage of nanofiber biopolymers for 3D cell 

culture template synthesis and It is not able to 

produce continuous fibers that can withstand the 

applied stresses, we introduce three main methods 

to produce nanofibers: electrospinning, self-

assembly and phase separation (12). 

 

Table 1. History of Electrospun development of nanofibers. 

Year Progress of Electrospinning technology 

1902 Electrospinning as a solution 

1980 Electrospinning as a melt 

1999 Preparation of Electrospining Nanocomposites 

2000 Electrospining Nanofibers for Tissue Engineering 

2003 Electrospun Nanofibers on an axis 

2005 Electrospinning Nanofibers as a emulsion 

2012 Electrospun Nanoyarn 

2014 Preparation of 3D porous electrospun compounded with freeze-drying technology 

 

 

Highlights 

 Phase separation, self-assembly and 

electrospinning are common and easy methods 

for producing nanofibers. 

 The imitation of extracellular matrix architecture 

is one of the challenges of cell culture. 
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Table 2. Polymers in electrospun process 

Polymer  Solvent Applications References 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polysaccharides 

and derivatives 

Cellulose N-methyl morpholine oxide or 

NMMO 

Textile, as food 

additives, paper, plastic  

(13) 

Cellulose acetate Acetone Textile, as food 

additives, paper, plastic  

(14,15) 

Ethyl cellulose Tetrahydro Furan (THF)/ 

Dimethyl Acetamide (DMA) 

As a carrier for loading 

of functional material 

(16) 

Propionyl cellulose Acetone As a carrier for delivery (17) 

Methyl cellulose Ethanol/water As a carrier for delivery (18) 

Hydroxypropyl  

cellulose 

Anhydrous ethanol As a carrier for delivery (19) 

Hydroxypropyl  

methyl cellulose 

Ethanol/water As a carrier for delivery (20) 

Carboxymethylcellulose Methanol/water As a carrier for delivery (21,22) 

chitin  1,1,1,3,3,3- 

hexafluoro-2- 

propanol or HFIP 

Tissue engineering and 

wound healing 

(23) 

Practical grade chitin 1,1,1,3,3,3- 

hexafluoro-2- 

propanol or HFIP 

Tissue engineering and 

wound healing 

(24) 

Chitin/PGA 1,1,1,3,3,3- 

hexafluoro-2- 

propanol or HFIP 

Tissue engineering and 

wound healing 

(25) 

Chitin/silk fibroin 1,1,1,3,3,3- 

hexafluoro-2- 

propanol or HFIP 

Textile and clothing (26) 

Chitosan Trifluoroacetic Acid (TFA)  

Ethanol/water 

Wound healing (27) 

Chitosan/polyvinyl alcohol 

(PVA) 

Aqueous acetic acid Wound healing (28) 

Hexanoyl chitosan Chloroform  Wound healing (29) 

Dextran Water and DMSO Adhesion of some  

functional material 

(30) 

Protein Collagen with  

gelatin/poly ethylene oxide 

1,1,1,3,3,3- 

hexafluoro-2- 

propanol or HFIP 

Tissue engineering and 

wound healing 

(31) 

Silk/PEO Formic acid Fabric industry (32) 

Casein/poly ethylene oxide Tetrahydrofuran Food supplement (33) 

Zein/hyaluronic  

acid/PVA 

Ethanol/water Medical application (34) 

Nucleic acid DNA Ethanol or water Gene Delivery (35) 

Synthetic and 

semisynthetic 

polymers 

Polyurethanes DMF Protective clothing (36) 

Polycarbonate Dichloromethane Sensor and filter (37) 

Polyacrylonitrile DMF Carbon nanotubes (38) 

Poly styrene Tetrahydrofuran catalyst (39) 

PVP Tetrahydrofuran Antimicrobial agent (40) 

Polylactic acid Dichloromethane delivery system (41) 

Polyvinyl carbazole Dichloromethane Sensor, filter (42) 

PLGA Tetrahydrofuran Scaffold for tissue 

engineering 

(43) 
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Materials used in 3D culture 

In 3D culture, there is a strong emphasis on the 

use of gelatin, elastin and collagen scaffolds. The 

structure of collagen provides a suitable biological 

space for the growth of cells, organs and fetal 

(44). The collagen in ECM can be separated from 

a native origin and does not excite the immune 

system (45). Cell-ECM binding, proliferation and 

differentiation in tissue engineering, is directly 

related to the structure of the fiber-like collagen, 

also the pattern of scaffold construction is the 

body's natural tissue ECM (46). Gelatin is a 

natural polymer that is almost identical in 

composition and biological properties to collagen. 

Gelatin can be used alone or in combination with 

a degradable polymer to produce nanofibers for 

tissue scaffolding, wound healing, and other 

medical applications (47). Gelatin's behavior is 

similar to that of other proteins in that it supports 

cellular supplement, migration and proliferation 

of cell (48). The structure of gelatin dissolves in 

water, but if we want to produce ultra-fine fibers 

for electrospinning, we cannot use a mixture of 

water and gelatin (49). Because the structure of 

gelatin should not be dissolved in water at 37°C or 

higher or congealing at low temperatures in the 

gel, its structure should be stable (50). 

Unfortunately, the combination of water with 

gelatin cannot be used in electrospinning. 

Moreover, Gelatin is a kind of colloidal solution 

that is not suitable for tissue scaffolding without 

cross-linking (51) (Figure 1). There are two types 

of protein in the human body that have amazing 

biological properties, like elastin that known as 

most linear elastic biosolid (52). 

 

Figure 1. Dissolution of cationic gelatin in water and formation of cross-links between gelatin particles 

Electrospinning 

Nano-scale nanofibers are produced by 

electrospinning, in a high-voltage electric field a 

solution is thrown from the tip of a spinneret to 

the plate. The advantages of this method are low 

cost, simplicity and fastness, which are used for 

the production of nanoscale and micro-scale also, 

the products that produced by this method have 

high surface-to-volume ratio and porosity, that is 

required for three-dimensional culture (53). 

Electrospinning is widely used for the production 

of polymeric scaffold for 3D culture for tissue 

engineering because of its structure similar to 

ECM (54). The use of this technique gives us the 

opportunity to determine the thickness of the 

nanofibers, the porosity and the composition of 

the nanofibers. In this method, in a large area, the 

diameter of the nanofibers can be reduced from 

micrometers to nanometers (55). The high surface 

area and high porosity in this method allow 

optimal cellular interaction and therefore allow 

potential scaffolding. The use of an electric field 

to design a polymer solution or melt from a hole 

to a collector is the basis of electrospinning using 

electric potential in a polymer solution, nanofibers 

with a diameter of 50 to 1000 nanometers can be 

produced (56). Due to the surface tension and the 

electric potential for loading in the polymer 

solution the solution is kept at the tip of a tube 

with a capillary structure, and the repellent force 

absorbs the solution by the plate (57). The term 

Taylor cone means that the increase in electrical 

potential causes the surface of the soluble 

hemisphere at the end of the capillary to lengthen, 

resulting in such a conical shape. Its further 
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increase overcomes the electric potential on the 

surface tensile forces, which causes the formation 

of fiber coming out of the Taylor cone (58). The 

fiber that comes out of the tip of the Taylor cone 

becomes unstable and gradually becomes thinner 

in the air, which is mostly due to stretching and 

solvent evaporation. These nanofibers are formed 

randomly and can eventually be assembled on a 

fixed collector (59) (Figure 2). Parameters such as 

the distance between the tip and the collector, 

which is made of metal, determine the solvent 

evaporation size of the nanofibers and the 

precipitation on the collector, and on the other 

hand, the collector movement pattern during the 

precipitation determines the final shape (60). 

Electrospinning systems are used to produce 

nanofibers with several different layers of 

different polymer systems. Another way to 

produce nanofibers with several different 

compositions is to have several holes where 

different solutions come out at the same time (61).   

Figure 2. Schematic view of nanofiber preparation with electrospinning device

Self-assembly 

Organizing in the self-assembly method is such 

that there are weak interactions such as 

electrostatic and hydrogen bonds that bind the 

atoms of the molecules together and create stable 

structures in the nanoscale (62). For the 

production and formation of nanostructures, the 

self-assembly method can be used for micelles, 

capsules, nanoparticles, etc. Expanding the 

application of nanoscale self-assembly to 

unconventional materials is a new way to  

multi-purpose systems customized for specific 

applications (63). However, our goal is to make 

scaffold to simulate the environment inside the 

body so that cells can grow on it. To improve the 

stability and adhesion of the structure in the 

connecting area, there are 3 glycine amino acids at 

the head of the pedal flexibility groups (64) 

(Figure 3).  

 

Figure 3. An example of nanofiber formation through self-assembly 
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Phase separation 

The phase separation method is that the polymer 

solvent, which is homogeneous, is converted to 

polymer-rich and poor phases of polymer, and this 

method is accomplish by exposed to an insoluble 

solution or by decrease temperature of the 

solution under the solubility curve (65). In this 

method, increasing the temperature separates the 

phase. The polymer solution that is submerged 

under the freezing point is used for produce a 

spongy-like structure by regulation of the thermal 

and kinetic parameters, porous structures such as 

the porous nanofluid matrix are easily obtained 

through this technique (66). Using the phase 

separation method, floor scaffolding is 

manufactured in five stages; in the first step, the 

solubility of the polymer is examined, then the 

separation of the phase, after that the solvent is 

extracted by water, in the next stage, finally 

freeze-dry in vacuum conditions (67) (Figure 4). 

The gelation stage is a key step in controlling the 

nanofiber matrix as well as the degree of porosity. 

High temperature is required to produce a plate-

like structure, while low temperature is required 

to create a network nanofiber structure (68). The 

limitation of the plate-like structure has been 

solved by increasing the cooling rate of the 

generators that produce uniform nanofibers. 

Various factors affect the properties of nanofibers, 

such as the concentration of the polymer (69). To 

reduce the porosity of the material and increase 

some properties such as mechanical properties, 

the polymer concentration must be increased. 

Other parameters such as thermal activities, 

solvent type and polymer type affect the 

appearance of nanofibers scaffolding (70). In the 

process of phase separation, a porous structure is 

formed within a strong, durable collagen-like 

fibrous network. To increase the porosity, 

macropores are combined by adding salt, sugar or 

paraffin as a porogen (Each particle volume, with 

a specific size and shape, is used in molded 

structures for tissue engineering to create pores) to 

the polymer solution during phase separation (71). 

To improve and increase cell implantation, 

dispersion and transfer of materials such as 

molecular signals, food and waste, and organizing 

cellular connections such as cell to cell and cell to 

extracellular matrix, this structure is built in the 

nanofibril phase separation matrix. At the cell 

membrane surface, there are adhesive proteins 

such as laminin and fibronectin that interact with 

nanofibers that are made similar to ECM (72). 

Phase separation is used to create a three-

dimensional culture structure with interconnected 

pores. These nanofibers are characterized by a 

higher surface-to-volume ratio than traditional 

scaffolding, which improves connection, 

migration, proliferation, and cell differentiation 

(73). 

 

Figure 4. Schematic diagram of formation of polymer scaffold using naphthalene 



Features and Methods of Making Nanofibers                                                                                   Kheyrandish M. et al.  

 

19| Jorjani Biomedicine Journal. 2022; 10(1): P 13-25. 

Results and discussion 

The use of biopolymer nanoparticles, which have 

the physical, chemical and mechanical properties 

of natural ECM tissues in the body tissues, as well 

as with high porosity and surface to volume ratio, 

the tendency to use these biopolymers is 

increasing (74). Even as an electrospun 

nanofibrous scaffold this proves that homogenized 

nanofibers show a useful approach to controlling 

cell orientation and migration. Contact guidance 

theory for nanofibers used shows that a cell is 

most likely to migrate in a direction where the cell 

tends to have chemical or physical structural 

properties (75). The reason for the lack of two-

dimensional cell culture compared to the three-

dimensional that shown in the studies is that the 

physical and chemical properties of the 

environment, cellular behavior, and gene 

expression are significantly affected. The use of 

3D culture patterns and its development is 

increasing (76). The challenge of using three-

dimensional culture is lack of connection between 

the cell and scaffold and prolonging the 

construction time of the 3D culture (77) (Table 3).

Table 3. Advantages and disadvantages of three techniques preparation nanofiber scaffolds. 

Technique Advantages Disadvantages 

Phase separation Control the diameter of the structures and also 

their formation 

A limited number of short-lived polymers 

can be produced 

Self-assembly  This method is expensive. Also, the fibers 

produced can be fragmented and absorbed 

Electrospinning This method has advanced mechanical properties, 

as well as inexpensive and nanofibers produced 

with very small diameters in microns 

Scaffolding production is limited and 

cannot be produced in high scale 

 

Conclusion 

One of the most important nanoscale biopolymer 

particle design techniques for cell culture is their 

construction. Electrospun collagens promote the 

growth, migration and penetration of cells into the 

scaffold. Biodegradable nanofibers, which have a 

controlled molecular surface and structure, can be 

electrospun to create a three-dimensional culture 

medium with the special arrangement of fibers 

and the integrity of the structure. To control and 

guide cell growth, these nanofibers can provide 

mechanical simulation of signals, and can also use 

appropriate and flexible nanofibers to regulate 

cellular behavior and some functional 

biopolymers. Electrospinning is also used to 

design nanofibers with collagen structures for 

scaffolding, such as natural ECM for tissue 

engineering. The imitation of nanoscale natural 

tissue architecture has increased through the 

development of nanofibers. The porous structure 

and surface-to-volume ratio of nanofibers help 

adhesion, migration, proliferation, and cell 

proliferation. If the structure of the scaffold has a 

high porosity, the exchange of nutrients also the 

excretion of cells is better between the structure of 

the scaffold and the surrounding fluid. Therefore, 

today, research into the construction of identifying 

and using nanofibers can be used as 3D culture 

scaffolding. 
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